

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Designing serverless architectures
for scale and speed

George Mao

Head of WW Solutions Architecture, Serverless Computing

Amazon Web Services

Agenda

• The evolution of serverless computing

• What’s new with serverless

We are witnessing a paradigm shift

Experiment,

innovate

more often

Release

features

faster

Build better

products

Focus on

business

logic

Decouple

software

systems

Win

customers

Win

customers

75% of organizations use or plan to use serverless
technologies within the next two years.1

Computing evolution – a paradigm shift
L
E

V
E

L
 O

F
 A

B
S

T
R

A
C

T
IO

N

FOCUS ON BUSINESS LOGIC

PHYSICAL MACHINES

Requires “guess” planning

Lives for years on premises

Heavy investments (capex)

Low innovation factor

Deploy in months

Computing evolution – a paradigm shift
L
E

V
E

L
 O

F
 A

B
S

T
R

A
C

T
IO

N

FOCUS ON BUSINESS LOGIC

VIRTUAL MACHINES

Hardware independence

Faster provisioning speed (minutes/hours)

Trade capex for opex

More scale

Elastic resources

Faster speed and agility

Reduced maintenance

Computing evolution – a paradigm shift
L
E

V
E

L
 O

F
 A

B
S

T
R

A
C

T
IO

N

FOCUS ON BUSINESS LOGIC

CONTAINERIZATION

Platform independence

Consistent runtime environment

Higher resource utilization

Simpler and faster deployments

Isolation and sandboxing

Start speed (deploy in seconds)

Computing evolution – a paradigm shift

Lambda

AWS Fargate

L
E

V
E

L
 O

F
 A

B
S

T
R

A
C

T
IO

N

FOCUS ON BUSINESS LOGIC

Continuous scaling

Fault tolerance built-in

Pay for value

Zero maintenance

SERVERLESS

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Launches

Lambda enhanced controls
• Async controls
• Enhanced streaming controls

Lambda Provisioned Concurrency
• Managed prewarming

Lambda Destinations
• Send execution results to a destination

API Gateway HTTP APIs
• Faster, cheaper APIs
• Simplified Lambda response format
• Better developer experience

Amazon RDS Proxy
• Managed connection pools

Express Step Functions
• Faster, cheaper Step Functions

Amazon Elastic File System (EFS) for
Lambda
• Persistent, durable storage

AWS

Lambda

Async

enhanced

controls

Max event age

Configurable

60s 6 hours

Max retry attempts

Configurable

0 2 times

These are optional settings

Defaults still apply

Invoke

downstream

without

writing code

Lambda

Destinations

AWS

Lambda

Amazon

SNS

Amazon

SQS

EventBridge

Lambda

Do more with less: Use Lambda Destinations

Designate an asynchronous target for Lambda function

invocation results (success or failure)

Lambda

Amazon SNS

Amazon SQS

EventBridge{

"version": "2019-05-03”,

"timestamp": "3242343292839”,

"requestContext": {

"requestId": "12345”,

"functionArn": "arn:aws:”,

"condition": "aCondition",

"approximateInvokeCount”: 3

},

"requestPayload": {…},

"responseContext": {

"statusCode": 200,

"executedVersion": 1

},

"responsePayload": {…}

}
Lambda

Amazon SQS

FIFO queues

as an event

source

High-throughput, ordered, invoked in batch

function A

(instance 1)

function A

(instance 2)

Batch Size = 2

A1A2

C1B1

A9 A1A2A3

B9 B1B2B3

C9 C1C2C3

Enhanced

controls on

stream

processing

BisectOnError

1st invoke

2nd invoke

3rd invoke

4th invoke

5th invoke

6th invoke

7th invoke

8th invoke

Record 1 9Batch size = 9, Bisect = true

Dealing with

sparse data

streams off

peak

Batch

window

Up to 300s

Build a batch of records for

up to 300 sec/5 min

Optimize for performance and cost

Dealing with

data

streams

spikes

• By default, Lambda invokes one
batch on one instance per shard

• Parallelization factor allows you to
have up to 10 batches on 10
instances per shard

• Order is maintained at partition
key level

Amazon Kinesis

1121
Record

processor

Consistent hashing

1

1

2

1

Batch 1

Batch 2

Batch 3

Parallelization factor

L
a

te
n

cy

Years of performance tuning

Provisioned Concurrency lets

you pre-initialize functions

Up to

1000
in a few

minutes

Then

500
per

minute

NEW

10,000 in 15

minutes

Useful for flash-sale workloads

Lambda Provisioned Concurrency

• Provisioned Concurrency keeps functions
initialized and hyper-ready to respond in
double-digit milliseconds

• You fully control when or how long to enable
Provisioned Concurrency

• Taking advantage of Provisioned Concurrency
requires no changes to your code

Lambda

Provisioned

Concurrency

What happens on a cold start?

Client

Invoke

Lambda

Service

Create new

execution

environment

and download

code

Bootstrap

the runtime Invoke the

handler

Prior to Provisioned Concurrency…

• Pre-warm your function with concurrent invocations, every 5 mins

• Pass in a test payload

• Create handler logic that doesn’t run the whole function

• Monitor CloudWatch Concurrency metrics

exports.handler = async (event) => {

// if a warming event

if (await warmer(event))

return 'warmed’

// else proceed with handler logic

return 'Hello from Lambda’

}

Now what happens on a cold start?

Client

Invoke

Lambda

Service

Create new

execution

environment and

download code

Bootstrap

the runtime Invoke the

handler

Provisioned Concurrency use cases:
High-velocity traffic bursts

Applications that:

• Serve content such as ads during a live stream

• Mobile applications such as games

• Marketing blitzes or flash sales

Lambda will:

• Provisioning scheduled in advance

• Schedule in advance to allow for scale-up

• Provision in increments of 5 mins

• Invocations above the provisioned concurrency are handled by on-demand
Lambda

Provisioning Concurrency auto scaling

• Provisioning scheduled in

advance

• Schedule in advance to

allow for scale-up

• Provision in increments of

5 mins

• Invocations above the

provisioned concurrency

are handled by on-demand

Lambda

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

Traffic (TPS) Provisioned concurrency

Amazon API Gateway: HTTP APIs

Up to 60%
lower latency

(single ms overhead)

Up to 71%

cheaper

($3.50 vs $1)/M

Simpler dev

experience

https://aws.amazon.com/blogs/compute/announcing-http-apis-for-amazon-api-gateway/

https://aws.amazon.com/blogs/compute/announcing-http-apis-for-amazon-api-gateway/

HTTP APIs

Private

integrations

HTTP APIs now offers developers the ability to
integrate any private resource in a VPC

You choose from:

Application load

balancer
Network load

balancer

AWS Cloud Map

© 2019, Amazon Web Services, Inc. or its Affiliates.

Lambda payload version 2.0

{

”statusCode": 200,

”body": {

”Name": ”George Mao",

”Handle": ”@iamgmao"

},

”Headers": {

”Access-Control-": ”…",

”X-API-Key": ”…",

}

}

{

”Name": ”George Mao",

”Handle": ”@iamgmao"

}

NEW!

Amazon RDS Proxy

Amazon RDS

Amazon RDS Proxy

Secrets Manager IAM

Connection

Pool

SQL / TLS

Lambda functions

AWS Step Functions Express Workflows

Faster:

>100K state
transitions

per second

Designed for

short duration

workflows:

<5min

Cost effective

at scale

Standard Workflows

• IT automation

• Report generation

• Order processing

• Payment and
billing

• Machine learning
model training

• ELT and big data
orchestration

• Media processing

Which one is

right for your

use case?

Express Workflows

• Event driven

microservice

orchestration

• High volume data

processing

• IoT data ingestion

• Order/cart validation

• payment

reconciliation

Standard vs express workflows

Standard Express

Maximum

duration
365 days 5 mins

Start execution

refill rate
300 per second 6,000 per second

State transition

refill rate
1,300 per second None

Execution

semantics

Exactly-once workflows step

execution

At-least-once workflow step

execution

Standard + Express Workflows

Express Workflows can be nested within a standard workflow
enabling you to use Express Workflows for short periods of task
execution and a Standard Workflow for long periods of task
execution or waiting

EndStart

Standard Workflow

Express Workflow

Validate
Image

Approval
Notification

Approval
Received

Store
Metadata

Rekognition Add Tags Thumbnail

Introducing Amazon EFS for Lambda

• Share data across 1,000s of
function invocations

• Achieve high performance, highly
available, durable storage with
persistent volumes

• Pay only for what you use

Availability zone Availability zone

EFS Mount

Target

EFS

Mount

Target

Amazon EFS

file system

AWS

Lambda

New workloads on AWS Lambda

Large file

data manipulation

Large scale

media processing
AI/ML

analytics

Realtime

applications

High res images

HD videos

Zip/Archives

Git
MXNet

TensorFlow
Content management

web apps

Simplify application architecture

Process files of any size

Reduce costs

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What are your first steps?

Find your serverless

developers today
Build a tiger team

Consider a

lighthouse project

Abt Associates and the Department of
Housing and Urban Development (HUD)

This serverless system, powered by Lambda
paired with Java frameworks, allows the
application’s code to be fully distributed,
resulting in a great increase in performance
at a fraction of the cost

Comic Rel ief

Learn serverless with AWS Training and Certification

Resources created by the experts at AWS to help you learn about serverless applications

No-cost, on-demand courses on serverless, including

AWS Lambda Foundations and Deep Dive on AWS Fargate

Learn to “think serverless” with new, intermediate-level, three-

hour course: Architecting Serverless Solutions

Visit the learning library at https://aws.training

Conclusion

• We are in the midst of a paradigm shift in computing

• AWS provides the broadest and deepest platform for serverless

• The AWS pace of innovation provides new features help you build
faster, cheaper, and better applications

Thank you!

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

George Mao

